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(57) ABSTRACT

The discussion relates to 4D tracking. One example can
utilize multiple 3D cameras positioned relative to an envi-
ronment to sense depth data of the environment from
different viewpoints over time. The example can process the
depth data to construct 3D solid volume representations of
the environment, select subjects from the 3D solid volume
representations, and recognize actions of the selected sub-
jects.
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TECHNIQUE 700

702
2

1
{
1

RECEIVE DEPTH DATA OF AN ENVIRONMENT
SENSED BY MULTIPLE 3D CAMERAS OVER TIME

704 ™

DETERMINE VOXEL OCCUPANCY OF THE ENVIRONMENT
FROM THE DEPTH DATA

CONSTRUCT A 3D SOLID VOLUME REPRESENTATION
USING THE VOLUME OCCUPANCY

SELECT A SUBJECT
IN THE 3D SOLID VOLUME REPRESENTATION

TRACK THE SELECTED SUBJECT
USING THE DEPTH DATA SENSED OVER TIME

RECOGNIZE AN ACTION OF THE TRACKED SUBJECT
USING THE 3D SOLID VOLUME REPRESENTATION

QUTPUT THE RECOGNIZED ACTION

FIG. 7
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4D TRACKING

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] The accompanying drawings illustrate implemen-
tations of the concepts conveyed in the present patent.
Features of the illustrated implementations can be more
readily understood by reference to the following description
taken in conjunction with the accompanying drawings. Like
reference numbers in the various drawings are used wher-
ever feasible to indicate like elements. In some cases,
parentheticals are utilized after a reference number to dis-
tinguish like elements. Use of the reference number without
the associated parenthetical is generic to the element. Fur-
ther, the left-most numeral of each reference number con-
veys the figure and associated discussion where the refer-
ence number is first introduced.

[0002] FIGS. 1A-1 E, 2A-2E, 3, 4A-4C, and 6A-6H
collectively show an example 4D dynamic solid modeling
scenario in accordance with some implementations of the
present concepts.

[0003] FIGS. 5 and 7-10 show example 4D dynamic solid
modeling methods that can implement some of the present
concepts in accordance with some implementations.
[0004] FIG. 11 shows an example 4D dynamic solid
modeling system in accordance with some implementations
of the present concepts.

DETAILED DESCRIPTION

Overview

[0005] Recognizing the actions of people in a crowded and
cluttered environment is a challenging computer vision task.
This description relates to tracking actions of people and/or
objects utilizing multiple three-dimensional (3D) cameras.
Depth data from the multiple 3D cameras can be used to
determine which voxels in an environment are occupied by
a person or object. Voxel occupancy can be used to construct
solid volume data, as opposed to simply outlining surfaces
of people or objects. Taken one step further, collecting the
depth data from the multiple 3D cameras over time can be
used to perform 4D dynamic solid modeling of the whole
space. With the added dimension of time, 4D dynamic solid
modeling can efficiently and accurately identify real-time
actions and/or behaviors of people, pets, robots, cars, etc.,
and their interactions with objects in the environment. The
present 4D dynamic solid modeling concepts can be imple-
mented in almost any use case scenario, even including
large-scale, cluttered environments, such as a crowded store,
a busy factory, or even a fast-paced city block. For purposes
of explanation, the description first turns to a relatively
simple office scenario.

Example Scenario

[0006] FIGS. 1A-1 E, 2A-2E, 3, 4A-4C, and 6A-6H
collectively show an example 4D dynamic solid modeling
(4D DSM) scenario 100. In this case, FIG. 1A shows an
environment 102 that includes three people 104 (e.g., per-
sons). In this simple office scene, the environment 102 also
contains various objects 106, such as a cup, a computer, a
keyboard, papers, etc. In this example, some objects are
designated with specificity to aid in the following discus-
sion, including a table 108, a chair 110, a couch 112, a coffee
table 114, and a desk 116. The scene shown in FIG. 1A can
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be thought of as a particular time point (e.g., snapshot in
time), Instance One. People 104 and/or objects 106 may also
be referred to as subjects 118.

[0007] In 4D dynamic solid modeling scenario 100, the
environment 102 can also include various cameras 120. In
FIG. 1A, four cameras 120 are shown. Camera 120(1) is
mounted overhead in the foreground of the scene, and aimed
into the drawing page. Cameras 120(2) and 120(4) are
mounted overhead on the right and left side relative to the
drawing page, respectively, and aimed toward the office
scene. Camera 120(3) is mounted in the background of the
scene. As such, the direction of the view shown in FIG. 1A
is roughly similar to that of camera 120(1). Cameras 120 can
be 3D cameras, which can employ any type of 3D technol-
ogy, such as stereo cameras, structured light, time of flight,
etc., as well as capture color images. In this case, the 3D
cameras can collectively capture depth data of the scene
over time (e.g., 4D data). The depth data collected over time
can be used to determine successive 3D solid volume
descriptions of the scene. Stated another way, the cameras
120 can be used to perform 4D dynamic solid volume
sensing of the environment 102. The 4D dynamic solid
volume data can be analyzed to identify actions of people
and/or objects in the environment 102.

[0008] FIGS. 1B through 1E show environment 102 from
the different viewpoints of cameras 120. In this case, FIG.
1B represents the view from camera 120(1), FIG. 1C rep-
resents the view from camera 120(2), FIG. 1D represents the
view from camera 120(3), and FIG. 1E represents the view
from camera 120(4). The images shown in FIGS. 1B through
1E also represent Instance One, having all been captured at
approximately the same time. Note that the multiple camera
angles provide relatively extensive coverage of the people
104 and objects 106 in the environment 102. For example,
in FIG. 1E the view of person 104(1) is somewhat obscured,
since person 104(3) is partially between the camera 120(4)
and person 104(1). However, the data captured by cameras
120(1), 120(2), and 120(3) can collectively overcome, or at
least partially remedy, deficiencies in the view of camera
120(2) in Instance One.

[0009] By combining the depth data collected from the
different camera viewpoints depicted in FIGS. 1B through
1E, 4D dynamic solid modeling concepts (e.g., algorithms)
can be used to determine which voxels in environment 102
are occupied by a person or other object. Once voxel
occupancy is determined, a 3D solid volume representation
200 of environment 102 can be created. FIGS. 2A through
2E collectively show a 3D solid volume representation 200
of environment 102. As such, the 3D solid volume repre-
sentation 200 shown in FIG. 2A can be thought of as a 3D
map of voxel occupancy at the Instance One time point.
[0010] In some implementations, 4D dynamic solid mod-
eling can be used to track people and/or objects. In order to
track a person in 4D dynamic solid modeling scenario 100,
the environment 102 can be partitioned into partial volumes
202, shown in FIG. 2B. In this example, the partial volumes
202 have the same height, as if they all extend from the floor
to the ceiling of environment 102. In this case, each partial
volume 202 contains a portion of the 3D solid volume
representation 200 that includes one of the people 104. For
instance, partial volume 202(1) is roughly placed around the
portion of the 3D solid volume representation 200 that
includes person 104(1). The portions of the 3D solid volume
representation 200 included in the partial volumes 202 can
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also correspond to other objects or portions of objects. For
instance, partial volume 202(1) also includes at least a
portion of desk 116, which is proximate to person 104(1) in
Instance One. Partial volumes 202 can overlap, thereby
containing a common portion of the 3D solid volume
representation 200. In this example, partial volume 202(2)
and partial volume 202(3) overlap, as indicated at 204.
[0011] FIGS. 2C through 2E show the partial volumes 202
separated from each other. In this example, where the partial
volumes 202 overlap, the common portion of the 3D solid
volume representation 200 can be included in both of the
separated partial volumes 202. For example, separated par-
tial volume 202(2) and partial volume 202(3) both contain a
common portion of the 3D solid volume representation 200
of the coffee table 114, indicated at 206.

[0012] In some cases, viewing the partial volumes 202
separately can help simplify the problem of tracking and/or
recognizing people’s actions or behaviors. For instance,
viewing the partial volumes 202 separately can focus on the
movements and/or actions of a single person. Also, process-
ing the partial volumes 202 separately from the whole 3D
solid volume representation 200 can reduce an amount of
processing resources needed to solve the problems of track-
ing the person and determining the action(s) of the person.
[0013] To bring the 4D dynamic solid modeling scenario
100 from 3D to 4D, images from an additional time point
can be added. FIG. 3 depicts the same environment 102, but
now at Instance Two, a different time point from Instance
One. In Instance Two, the people 104 are located at different
positions within the scene. For example, in Instance One
person 104(1) is sitting in chair 110 at the desk 116, holding
some papers. In Instance Two, person 104(1) is standing
behind chair 110, and person 104(2) is holding the papers. At
Instance Two, the multiple cameras 120 can again be used to
capture depth data from multiple views of environment 102,
and a new 3D solid volume representation of environment
102 can be constructed. For sake of brevity, the detail of the
new 3D solid volume representation will not be repeated for
Instance Two. To summarize, by repeatedly capturing depth
data from the multiple cameras 120 at different time points,
and constructing 3D solid volume representations for each
time point captured, 4D dynamic solid modeling can be used
to track people and/or objects over time, as described further
relative to FIG. 4.

[0014] FIGS. 4A through 4C illustrate environment 102
from an overhead (e.g., top down) view. As such, FIGS. 4A
through 4C show the three people 104 and objects 106,
including for instance the table 108, couch 112, and desk 116
introduced above. FIGS. 4A through 4C each illustrate
environment 102 at a different time point. For example, FIG.
4A shows Instance One, FIG. 4B shows Instance Two, and
FIG. 4C shows a third time point, Instance Three. FIG. 4A
also includes the partial volumes 202 that were introduced
above relative to FIG. 2B. Note that since FIGS. 4A through
4C represent different time points, the people 104 and their
respective partial volumes 202 have different locations in
each FIG. Therefore, FIGS. 4A through 4C are an illustra-
tion of how the people 104 can be tracked over time using
4D dynamic solid modeling concepts. With 4D dynamic
solid modeling, any partial volume can be followed over
time, whether stationary or moving, to continually identify
actions of people and/or objects within the partial volume.
[0015] FIG. 5 provides a visualization of application of 4D
dynamic solid modeling concepts. FIG. 5 includes the partial
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volumes 202 separated from each other, as described above
relative to FIGS. 2C through 2E. FIG. 5 also includes action
recognition technique 500 and recognized actions 502. As
shown in FIG. 5, partial volume 202(1) can be subjected to
action recognition technique 500(1). The result of action
recognition technique 500(1) can be recognized action 502
(1) of person 104(1). Similarly, the result of action recog-
nition technique 500(2) can be recognized action 502(2),
and the result of action recognition technique 500(3) can be
recognized action 502(3) of person 104(3). In some cases,
action recognition technique 500 can be a same technique
applied repeatedly to all of the partial volumes 202. In other
cases the applied action recognition technique 500 can vary
between partial volumes 202 and/or vary over time for a
partial volume 202. Further detail of an example action
recognition technique 500 will be described relative to FIG.
8, below.

[0016] FIG. 6 shows additional examples of 3D solid
volume representations 600 in partial volumes 602 with
people performing various actions. The examples in FIGS.
6A through 6H include 3D solid volume representations 600
of people bending, drinking, lifting, pushing/pulling, open-
ing a drawer, reading, waving, and clapping, respectively. In
these examples, the partial volumes 602 are roughly cen-
tered on a person, and many of the partial volumes 602
include portions of other objects and/or background mate-
rial. Not only can 4D dynamic solid modeling concepts
reliably recognize actions of people despite such clutter in
an environment, in some cases these other objects and/or
materials can help with recognition of the actions. For
instance, detection of a chair can be used as contextual
information to help recognize that a person is performing the
action of sitting. The examples in FIG. 6 are just a few
examples of the myriad of positions and/or poses related to
actions that can be recognized with 4D dynamic solid
modeling concepts.

[0017] Referring again to FIGS. 4A through 4C, with the
tracking of the partial volumes 202 over time, the action
recognition technique 500 introduced in FIG. 5 can be
repeatedly applied over time to continue to update the
recognized actions 502 of the people 104 in their respective
partial volumes 202. For example, as time passes from the
Instance One (FIG. 4A) to Instance Two (FIG. 4B), action
recognition technique 500(1) can update the recognized
action 502(1) of person 104(1) from sitting to standing.
Action recognition techniques 500(2) and 500(3) can simi-
larly continue to update recognized actions 502(2) and
502(3). In this manner, 4D dynamic solid modeling concepts
can be used to build an understanding of a person’s actions
and/or behaviors over time.

[0018] Taken one step further, the person’s actions and/or
behaviors within his/her respective partial volume can be
placed back into the context of the broader environment 102.
Using the combined recognized actions 502 of the people
104 in the environment 102, an understanding of the inter-
actions of people and/or objects can be built. For instance,
4D dynamic solid modeling can determine that in Instance
One (e.g., FIG. 1A), person 104(2) is interacting with person
104(3) by handing person 104(3) a cup. 4D dynamic solid
modeling can also determine that person 104(1), sitting at
the desk 116, does not appear to be interacting with person
104(2) or person 104(3). In this manner, 4D dynamic solid
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modeling can begin to mimic human vision, taking in a
holistic view of an environment to figure out what is
happening in a scene.

[0019] The 4D dynamic solid modeling scenario 100
described above illustrates how a 4D scan, using depth data
from multiple cameras over time, can be used to produce a
4D solid volume model of the scene. Rather than simply
outlining the surfaces of people or objects, the 4D solid
volume model describes the voxel occupancy for the space.
Stated another way, the 4D solid volume model can describe
the internal fillings of the entire space. With a 4D solid
volume model, potentially every detail about people and
their environment can be captured, even in a large-scale,
cluttered scene. This rich 4D detail can be used to reliably
track the actions of people and/or objects in real-world
settings and build an understanding of their behaviors and
interactions.

[0020] The uses for such a robust understanding of peo-
ple’s actions and behaviors are practically limitless. Work-
places could improve efficiency and/or comfort by optimiz-
ing the movement patterns of workers. Stores could improve
product placement by better understanding the interaction of
shoppers with products. Factories could improve safety by
limiting the proximity of humans to potentially dangerous
movements of large, industrial robots. Traffic accidents
could be avoided by monitoring the flow of cars and/or
pedestrians on a city street. Even our own homes could be
equipped to respond to our activities by anticipating needs
for lighting, temperature, music, letting a pet in or out,
adding items to a grocery list, etc. As such, 4D dynamic solid
modeling concepts can be an integral part of smart homes,
smart stores, smart factories—a smarter world.

Example Techniques

[0021] FIGS. 7-10 illustrate example techniques (e.g.,
methods) for performing 4D dynamic solid modeling con-
cepts. FIG. 7 can include example technique 700. In FIG. 7,
blocks 702-714 outline the steps of technique 700, which are
described in detail below. FIG. 8 provides additional detail
regarding block 708. FIG. 9 provides additional detail
regarding block 710. FIG. 10 provides additional detail
regarding block 712.

[0022] In some implementations, aspects of the example
techniques described relative to FIGS. 7-10 can be similar to
aspects of the 4D dynamic solid modeling scenario 100
described above relative to FIGS. 1A through 6. As such,
occasional reference will be made to previous FIGS. to assist
the understanding of the reader.

[0023] As shown in FIG. 7, at block 702, technique 700
can receive depth data of an environment sensed by multiple
3D cameras over time. The cameras can be similar to
cameras 120 shown in the example in FIG. 1A. In one
implementation, the cameras can be Kinect™ brand cameras
from Microsoft Corporation.

[0024] At block 704, technique 700 can determine voxel
occupancy of the environment from the depth data. At block
706, technique 700 can construct a 3D solid volume repre-
sentation using the voxel occupancy. In some implementa-
tions, a 3D solid volume construction algorithm can perform
blocks 704 and/or 706 of technique 700.

[0025] Referring to block 704, determining voxel occu-
pancy can include partitioning the environment into voxels.
Potentially any environment can be partitioned into voxels.
Furthermore, the environment can be mapped using a world
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coordinate system, such as the x (horizontal), y (horizontal),
and/or z (vertical) coordinates shown in the example in FIG.
2A, for example. The cameras and/or depth data can be
calibrated with respect to the world coordinate system. Once
the environment is mapped, each voxel can be located by its
respective coordinates. Voxel occupancy can be determined
based on whether each of the located voxels contains part of
a subject (e.g., person and/or object).

[0026] In some cases, the environment can be partitioned
into voxels with a cube shape. For instance, a voxel can have
a cube shape measuring 25 millimeters per side. In another
instance, a voxel can measure 5 centimeters per side. Other
sizes, shapes, methods for partitioning an environment,
and/or methods for mapping voxels in an environment are
contemplated.

[0027] In one implementation, given a set of calibrated
RGBD images, voxel center coordinates can be denoted as
(X;, ¥;» Z;), where i=1 . . . N. A number of cameras can be M.
Extrinsic matrices of the cameras can be [RIt;], where j=1
... M, R, is a rotation matrix, t, is a translation vector, and
the intrinsic matrices are K;. The depth images from the
cameras can be denoted as D, . . ., D,,. In the following,
0 and 1 can represent false (e.g., an unoccupied voxel) and
true (e.g., an occupied voxel), respectively. The occupancy
of the voxel at (x,, y,, z,) from camera j can be computed as:

N_rp3(;3 T, 7
Oj(l)*[Rj ‘lj 1% i 21 1] EDj(K}[Rj‘lj][xix i 7 117)

where Rj3 and tj3 are the third row of R; and t,. O (i) can also
be conditioned on the camera field of view. For example, if
the projection K[R/It][x;, ¥, 7, 117 is outside of the field of
view, O/(i) can be set to 1. Thus, the occupancy O(i) of the
voxel i can be the intersection of O,(i) from all the M
cameras:
0)=N;= "0}

[0028] Referring to block 706, a 3D solid volume repre-
sentation of the environment can be constructed using the
volume occupancy. In some cases, only the volume seen
from a particular camera is carved out. This aspect can allow
construction of a 3D solid volume representation even where
the fields of view of different depth cameras do not have
overlap.

[0029] In some implementations, the following two tech-
niques can further improve quality of 3D solid volume
representation: 1) an orthographic top-down view of the
point cloud in the volume can be used as a mask to remove
small “tails” introduced at camera boundary regions; and 2)
small misses in synchronization among cameras can be
mitigated. In some cases, poor synchronization among cam-
eras can lead to vanishing of thin structures in 4D volumes.
A best-effort fashion can include extracting frames from all
the cameras linked together into a local network. For
example, with fast moving body parts (e.g., arms), small
misses in synchronization may occur. To remedy this issue,
all the points from the depth cameras can be injected into the
solid volume. For example, O(i) can be set to one where
there is a point in the voxel i. These voxels can be on the
scene surface and the other voxels can be internal voxels. In
this example, the holistic property of the 4D volume can
produce reliable action recognition.

[0030] In some cases, directly computing 4D solid vol-
umes using a CPU can be resource prohibitive due to the
large number of voxels. For example, the example environ-
ment 102 described relative to FIG. 1A above can have a
volume of 201x201x85 voxels. Alternatively, pre-computa-
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tion can be performed for [Rj3 Itj3 1%, Vi, Z,, 117 and K[Rlt]
[X;» ¥,» 2,5 117. Then comparison operations can be performed
in parallel in a GPU. Similarly, point cloud filling and
top-down carving can also be performed in parallel. In this
example, real-time 4D solid volume modeling of environ-
ment 102 can be performed with as little as 1 to 2 percent of
GPU usage.

[0031] At block 708, technique 700 can select a subject in
the 3D solid volume representation. As described above, the
subject can be a person and/or object to be tracked in a
scene. In some cases, 4D dynamic solid modeling can
include scanning cluttered, crowded, and/or fast-moving
scenes. In conditions such as these, direct action recognition
can be difficult, with potential for inaccurate results and/or
intense computing resource requirements. Computing
resources can be conserved and results can be improved by
focusing attention on selected subjects.

[0032] To select a subject using the 3D solid volume
representation, as a first step, subject candidates can be
detected. For example, a subject candidate detection algo-
rithm can be employed. Although a sweeping volume solu-
tion could be used to detect subject candidates, this approach
can have high complexity. Alternatively, a light-weight
solution can be used. In some cases, a top-down envelope
image can be processed to detect subject candidates. For
example, f(m,n.k) can be the volume data. In this example,
m,n can be x,y coordinates, and k can be the z coordinate.
Here, z=0 can be the ground plane. The top-down envelope
can be g(m,n)=max,(¢p(f{m,n.k))), where ¢(f(m,nk))=k if
f(m,n,k)>0 and otherwise ¢(f(m,n.k))=0. In some cases, each
potential subject can correspond to at least one local maxi-
mum on g. In this example, a simple Gaussian filter can be
used to extract the subject candidates. In this example, a
subject candidate can be detected by locating a local maxi-
mum with a given width and height. The local maxima can
be found on the Gaussian-filtered, top-down envelope using
non-maximum suppression. In other implementations, addi-
tional voxel attributes, such as color and/or multi-resolution
volume data, can be used to assist in detecting subject
candidates.

[0033] Once subject candidates are detected, a partial
volume (similar to the partial volumes 202 introduced above
relative to FIG. 2B) can be established around each subject
candidate. For example, the subject candidate detection
algorithm can also establish a corresponding partial volume
for each subject candidate. In some cases the partial volumes
can be cuboids. In some cases a height of the partial volumes
can be the overall height of the mapped environment. In this
example depicted in FIG. 2B, a partial volume can have a
volume of 31x31x43 voxels, where the voxels measure 5
centimeters per side. This example volume can be large
enough to cover a person with different poses. Other sizes
and/or shapes of partial volumes are contemplated.

[0034] A subject classifier algorithm can be used to clas-
sify whether each partial volume contains a subject. In some
implementations, machine learning with a trained model can
be used for classification. For example, a 3D subject clas-
sifier convolutional neural network (CNN) can be used for
classification. For instance, a 3D people classifier CNN
trained on labeled training data with people can be used to
classify whether a partial volume contains a person. In other
cases, other models could be used to classify whether partial
volumes contain other subjects of interest, such as pets,
robots, cars, etc.
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[0035] The structure of an example 3D subject classifier
CNN 800 is shown in FIG. 8. The 3D subject classifier CNN
800 can contain a sequence of 3D convolution layers 802,
rectified linear units (RelLUs), and pooling layers 804 (e.g.,
max-pooling layers) to extract features from the partial
volume. In FIG. 8, to avoid clutter on the drawing page, only
one instance of a 3D convolution layer 802 and a pooling
layer 804 are designated, and the ReLUs are not shown. The
features are then fed into a fully connected network for
people classification. The 3D subject classifier CNN 800 can
give a probability of each partial volume containing a
subject. In some cases, tracking partial volumes over time
can remove false subject detections and/or smooth out
missing subject detections, therefore improving the detec-
tion accuracy. Even with just a few thousand frames of
training data, in some cases the 3D subject classifier CNN
800 can achieve relatively high people classification accu-
racy for the purposes of 4D dynamic solid modeling. The
results from 3D subject classifier CNN 800 can be used to
select subjects to be tracked in the next step of technique
700.

[0036] Referring again to FIG. 7, at block 710, technique
700 can track the selected subjects using the depth data
sensed over time with a subject tracking algorithm. In some
cases, a subject tracking algorithm can be represented by the
example tracking graph 900 shown in FIG. 9. In this
example, subject tracking can be formulated as a path
following problem. For instance, subject tracking can
include construction of a trajectory for a selected subject in
a current frame t and the next n frames over time. In one
example, n can be a small number, e.g., three. A small
number of frames can introduce a short delay, which can
improve reliability of subject tracking.

[0037] Asshown in FIG. 9, tracking graph 900 can include
three kinds of nodes: trajectory nodes 902 (rectangle shape)
represent trajectories already formed, prediction nodes 904
(pentagon shape), candidate nodes 906 (circle shape), and
edges 908. Only one of each type of element is labeled in
FIG. 9 to avoid clutter on the drawing page. The number of
prediction nodes 904 can equal the number of candidate
nodes 906 plus the number of prediction nodes 904 at a
previous time point. The edges 908 in the graph can indicate
possible matches between nodes. Edge weights can be
determined by a difference in probabilities between the 3D
subject classifier CNN 800, a Euclidean distance, a voxel
occupancy volume difference, and/or a color histogram
difference between neighboring nodes. The trajectory nodes
902 can also have a weight inversely proportional to a
trajectory length. In some cases, the subject tracking algo-
rithm can include finding an extension of each trajectory
from time t-1 to t+n, so that the paths pass each trajectory
node 902 and all the paths are node disjoint.

[0038] In some cases, the subject tracking algorithm can
be reduced to a min-cost flow problem and solved using a
polynomial algorithm. For instance, when tracking a person,
each trajectory can be extended to the neighboring nodes
within a radius d,, which can be determined by the max-
speed of a person and the frame rate of the subject tracking
algorithm. A gating constraint can also speed up the (poten-
tially optimal) path search.

[0039] In this example subject tracking algorithm, after
the path search, each existing trajectory can be extended by
one-unit length. In a person tracking instance, the trajecto-
ries with a low people score can be removed. Here, the
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people score can be defined as the weighted sum of a current
people probability and a previous people score. Also, new
trajectories can be included for each candidate node at time
t that is not on any path. The new trajectories can be used to
form a new graph for the next time instant. The procedure
can be repeated for each new video frame received.

[0040] Insome cases, FIGS. 4A through 4C can be viewed
as an example result of the subject tracking algorithm. FIGS.
4A through 4C can represent 4D tracking over a few
thousand image frames, for example. The subject tracking
algorithm can be robust against clutter and crowd. For
instance, the subject tracking algorithm can perform in
relatively complex interaction cases, such as two people
hugging, without tracking loss.

[0041] Referring again to FIG. 7, at block 712, technique
700 can recognize an action of the tracked subject using the
3D solid volume representation. For example, an action
recognition procedure can include analyzing how the 3D
solid volume representation of a person (e.g., a person
volume) evolves over time to determine a recognized action
of the person (see for example FIG. 5, above). Since the
present 4D dynamic solid modeling concepts include deter-
mining voxel occupancy for potentially the entire environ-
ment, the 3D solid volume representation within any given
partial volume can include rich contextual information. This
contextual information can be valuable background context
for recognizing an action. For instance, a chair underneath a
person can be used to infer that the person is sitting. In some
cases, body poses, movement of body parts, and/or objects
a person is handling can be viewed as clues to infer the
action of a person. In other implementations, the position
and/or speed of a subject could also be used in action
recognition.

[0042] In some cases, an action recognition algorithm can
include use of a trained model to recognize actions. In one
implementation, the trained model can be a deep convolu-
tional neural network. For example, FIG. 10 illustrates an
example model architecture, termed Actiond4D-Net 1000.
Inputs to ActiondD-Net 1000 can be a sequence of partial
volumes automatically extracted from the subject selection
and subject tracking procedures described above relative to
blocks 708 and 710 of FIG. 7.

[0043] As shown in FIG. 10, in Action4D-Net 1000,
inputs can go through a 3D CNN sequence 1002. The 3D
CNN sequence 1002 can include several 3D convolution
layers followed by 3D max-pooling layers which can pro-
duce action features. In some implementations, an auxiliary
attention module 1004 can be used to generate local features.
Also, a global module 1006 with global max-pooling can be
used to generate global features. Both the local and the
global features for each time instant can be concatenated. In
this example, the concatenated features can be inputs into a
classifier, such as a Recurrent Neural Network (RNN) 1008.
RNN 1008 can be a Long Short-Term Memory (LSTM) cell,
for instance. The RNN 1008 can be used to aggregate
temporal information for a final action classification.
[0044] The auxiliary attention module 1004 can improve
performance of action recognition by mimicking the ability
of humans to focus attention on different regions when
recognizing different actions. For instance, when recogniz-
ing the action of book reading, humans generally focus on
hands of a subject and the book in his/her hands. While
recognizing the action of drinking water, humans shift focus
to the mouth area of the subject. The auxiliary attention
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module 1004 is used to mimic this attention focus. In
particular, the auxiliary attention module 1004 is able to
automatically discover relevance between different inputs at
a given context. The auxiliary attention module 1004 can be
employed to automatically learn the (potentially) most rel-
evant local sub-volumes for a given action.

[0045] For example, V € R cap be the output
from the last 3D convolution layer, where F is the number
of filters and L, W, and H are the size of the 3D output. In
particular, each location in the 3D output can be represented
as v, € R¥ for 1=i<l, 1=j=<W and 1=<k<H. The attention
weights for all v,; can be computed as:

ﬁijk:ht—l R Vijk
a=softmax(f)

[0046] where o ERZ*7*H can be the attention weights, U
€ R can be the weight matrix to be learned, and h,_, €
R” can be the previous hidden state of size D from the
RNN. Here, the network can automatically discover rel-
evance of different sub-volumes for different actions. Next,
the local feature v can be computed as a weighted sum of all
the sub-volume features v .

v= Z Qijk Vijk
ik

[0047] At global module 1006, global max-pooling can be
employed to extract global features as extra information for
action recognition. For instance, 3D solid volume represen-
tations of people sitting vs. kicking can look quite different.
These different actions can be captured by the global fea-
tures of the partial volumes. A 3D convolution layer can be
used, followed by a global pooling layer, to obtain the global
feature g. Subsequently, the global feature g and the local
attention feature v can be supplied to the LSTM cell to
capture temporal dependencies. An action classification
model, which can be a Multi-Layer Perceptron (MLP), for
example, can take a hidden state from the LSTM cell as
input to generate recognized actions.

[0048] Referring again to FIG. 7, at block 714, technique
700 can output the recognized action. The recognized action
can be used in a variety of scenarios, some of which have
been suggested earlier. The recognized actions can be com-
bined to consider interactions of people and/or objects. The
recognized actions can be analyzed to understand behaviors
of people and/or objects over time.

[0049] The described methods can be performed by the
systems and/or elements described above and/or below,
and/or by other 4D dynamic solid modeling devices and/or
systems.

[0050] The order in which the methods are described is not
intended to be construed as a limitation, and any number of
the described acts can be combined in any order to imple-
ment the method, or an alternate method. Furthermore, the
method can be implemented in any suitable hardware,
software, firmware, or combination thereof, such that a
device can implement the method. In one case, the method
is stored on one or more computer-readable storage medium/
media as a set of instructions (e.g., computer-readable
instructions or computer-executable instructions) such that
execution by a processor of a computing device causes the
computing device to perform the method.
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Example Results

[0051] Table 1, provided below, shows results of the
present 4D dynamic solid modeling concepts compared to
the existing computer vision methods. In order to introduce
the results shown in Table 1, following are brief descriptions
of the technical problem of action recognition by computer
vision, and the existing computer vision approaches to
solving this technical problem.

[0052] In general, human vision is good at recognizing
subtle actions. Computer vision can have difficulty recog-
nizing and categorizing actions with the robustness and
accuracy of human vision. The difficulty can be caused by
the variations of the visual inputs, such as a crowded and
cluttered environment. For example, in a video of an envi-
ronment, people may have different clothing, different body
shapes, and/or may perform the same action in slightly
different ways. The environment captured in the video may
be crowded with other people or objects that create occlu-
sions, in other words partially blocking a view of a person
performing an action. A crowded or cluttered environment
can also make it difficult to segment out (e.g., distinguish) a
person from other people or objects. In another example, a
viewing angle of a video camera may be different from a
viewing angle of a training video with which a computer
vision method is trained. In this example, due to the different
viewing angle, an action in the video may look quite
different from the same action shown in the training video,
and computer vision may have trouble recognizing the
action.

[0053] With existing computer vision approaches, the data
collection and/or processing requirements to produce reli-
able results can be onerous. For example, successful action
recognition can require deep learning methods based on
multiple data streams, such as color, motion, body part heat
maps, and/or finding actions in spatial-temporal 3D vol-
umes. In other cases, in order to produce reliable results,
training data are required to include a wide variation of
camera settings, people’s clothing, object appearances, and
backgrounds. Other approaches require special hardware for
high quality stereo imaging, and/or complex equipment
calibration methods for precise point alignment. Still other
approaches require special blue/green or static backgrounds
to be able to single out people and determine their actions,
making these approaches impractical in the real world.
Some approaches include semantic segmentation to differ-
entiate a person from a background before trying to recog-
nize an action of the person. However, semantic segmenta-
tion may lose body parts or include other background
objects. For this reason, semantic segmentation errors can
cause action recognition failures. Many methods are camera
view dependent—if the view of the camera is different from
the trained model, the model must be retrained before
actions can be recognized.

[0054] The results shown in Table 1 were produced with
an experimental setup intended to approximate a real-world
environment, without relying on the impractical require-
ments described above. The experimental setup included a
cluttered scene with multiple people. The scene included
various objects such as a sofa, tables, chairs, boxes, drawers,
cups, and books. The people had different body shapes,
gender, and heights. The dataset included the people per-
forming 16 actions, such as drinking, clapping, reading a
book, calling, playing with a phone, bending, squatting,
waving hands, sitting, pointing, lifting, opening a drawer,
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pull/pushing, eating, yawning, and kicking. As indicated in
Table 1, the experiment was performed with people in five
groupings.

[0055] In the experimental setup, four RGBD cameras
were used to capture videos of the environment. Some of the
videos were used to train models, and some of the videos
were used for testing. Each tracked person in each video
frame was assigned an action label. During the experiment,
an action classification was determined to be correct where
the predicted action label for a particular person in each
video frame matched the assigned action label. The match
was accepted within a window of plus/minus three succes-
sive video frames relative to the particular video frame.
[0056] The existing computer vision approaches tested
included ShapeContext, Moments, Color+Depth, Skeleton,
and PointNet. Each of these existing computer vision
approaches are briefly introduced below.

[0057] ShapeContext, or 3D Shape context, is a 3D ver-
sion of a shape context descriptor, where the context of a
shape is used to model whole body configuration in an effort
to better recognize actions of the body. In general, hand-
crafted features such as shape context can be less robust than
learned features from deep learning, especially when there is
strong background clutter. In this experiment, ShapeContext
had the height axis and the angle axis uniformly partitioned,
and the radial axis logarithmically partitioned. ShapeCon-
text can have different number of bins (e.g., 512 bins). For
ShapeContext, a deep network was used in which the input
was the 3D shape context descriptors. The deep network
used a Long Short-Term Memory (LSTM) network to
aggregate temporal information.

[0058] Moment is another example of a shape descriptor,
and another example of a hand-crafted feature that can be
less robust than learned features, especially when there is
strong background clutter. In this experiment, raw moments
up to order 4 were used. Each element of a moment vector
was computed as X, (X=X (y=y)¥(z-z.), where (x,y,2)
were the coordinates of the occupied voxels and (x_, y,_, Z.)
was the volume center. Similar to the above ShapeContext
approach, the moment descriptor was fed into a CNN for
action recognition.

[0059] Relating to Skeleton, images are analyzed to model
people with 3D stick figures (e.g., skeletons) so that poses
may be identified. However, extracting the 3D stick figures
is non-trivial, and can fail in a cluttered environment due to
occlusions. Moreover, the 3D stick figures do not include the
context of actions, such as an object that a human subject is
handling. It is therefore hard to disambiguate many different
actions using the 3D stick figures alone. Also, this method is
camera view dependent for successful action recognition. In
this experiment, positions of the skeleton joints of each
subject were normalized using the neck point and then the
x-y coordinates from all four cameras were concatenated
into a feature vector. A deep network was trained using a
similar approach to the above ShapeContext method.
[0060] A color plus depth approach can be used as another
method. This method follows the scheme of standard action
recognition methods on 2D images, and is also camera view
dependent. In this experiment, bounding boxes of each
person were found based on tracking result. Color and depth
images of each person in the video were cropped. The
cropped color and depth video was used in action recogni-
tion. A deep neural network was trained using the cropped
color and depth images and corresponding action labels.
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[0061] PointNet is a deep learning method for object
recognition and semantic segmentation on 3D point clouds.
In this experiment, the model was extended to include an
LSTM layer to handle sequential data for action recognition.
The network was trained end-to-end using point clouds from
the four camera images.

[0062] In Table 1 below, percentage accuracy among the
competing methods are shown for each of the five groupings
in the experiment. As seen in Table 1, 4D dynamic solid
modeling concepts (4D DSM) generally produced the high-
est action recognition accuracy results among the competing
methods. For example, for Group 1, 4D dynamic solid
modeling was 83.6 percent accurate, while the next best
performing method, PointNet, was only 55.8 percent accu-
rate. Other implementations of 4D dynamic modeling and/or
different comparisons may produce slightly different results,
but 4D dynamic modeling can produce significantly better
results than existing methods.

TABLE 1

Action recognition accuracy (percentage).

Method Group 1 Group 2 Group 3 Group 4 Group 5
ShapeContext 36.2 28.3 353 63 39.1
Moments 41.2 44 46.6 48.2 44.5
Skeleton 52.7 51.2 56.6 56.1 58.1
Color + Depth 48.2 55.4 63.7 70.9 56.6
PointNet 55.8 60.4 62 57 53.7
4D DSM 83.6 83.8 92.6 96.6 88.3

[0063] Table 1 shows how 4D dynamic solid modeling

concepts can be an accurate and reliable technical solution
to the technical problem of action recognition in a real-
world, cluttered environment. 4D dynamic solid modeling
can be invariant to camera view angles, resistant to clutter,
and able to handle crowds. 4D dynamic solid modeling
provides information not only about people, but also about
the objects with which people are interacting. Therefore,
rather than being hindered by clutter, 4D dynamic solid
modeling is able to provide rich, 4D information about the
complex environment.

[0064] The 4D dynamic solid modeling technical solution
is able to provide rich, 4D information in real time without
onerous equipment or processing resource requirements. In
some cases, 4D dynamic solid modeling of an environment
can be performed while using as little as 1 to 2 percent of a
generic GPU. Additionally, 4D dynamic solid modeling
techniques can be fast. For example, with a single GTX1080
TL 4D dynamic solid modeling can track 10 people and infer
their actions at 15 frames per second.

[0065] Stated another way, 4D dynamic solid modeling
can quickly and reliably generate rich, 4D information of a
complex environment, and recognize actions of tracked
subjects in real time. Experimental results confirm that 4D
dynamic solid modeling offers improved action recognition
performance among existing computer vision methods.
Even in large-scale settings, 4D dynamic solid modeling can
be deployed to enhance how people interact with the envi-
ronment.

Example System

[0066] FIG. 11 shows a system 1100 that can accomplish
4D dynamic solid modeling concepts. For purposes of
explanation, system 1100 includes cameras 120. System
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1100 also includes a controller 1102. The controller 1102 can
coordinate function of and/or receive data from the cameras
120 and/or from other sensors. System 1100 can also include
one or more devices 1104. In the illustrated example, device
1104(1) is manifest as a notebook computer device and
example device 1104(2) is manifest as a server device. In
this case, the controller 1102 is freestanding. In other
implementations, the controller 1102 can be incorporated
into device 1104(1). The cameras 120, controller 1102,
and/or devices 1104 can communicate via one or more
networks (represented by lightning bolts 1106) and/or can
access the Internet over the networks. Various networks are
shown in FIG. 11, additional networks are contemplated. For
example, in some cases cameras 120 could communicate
with device 1104(2).

[0067] As illustrated relative to FIGS. 1A-1E, the cameras
120 can be proximate to an environment to which 4D
dynamic solid modeling concepts are applied. Controller
1102 and/or devices 1104 can be proximate to the environ-
ment or remotely located. For instance, in one configuration,
device 1104(1) could be located proximate to the environ-
ment (e.g., in the same building), while device 1104(2) is
remote, such as in a server farm (e.g., cloud-based resource).
[0068] FIG. 11 shows two device configurations 1110 that
can be employed by devices 1104. Individual devices 1104
can employ either of configurations 1110(1) or 1110(2), or an
alternate configuration. (Due to space constraints on the
drawing page, one instance of each configuration is illus-
trated rather than illustrating the device configurations rela-
tive to each device 1104). Briefly, device configuration
1110(1) represents an operating system (OS) centric con-
figuration. Configuration 1110(2) represents a system on a
chip (SOC) configuration. Configuration 1110(1) is orga-
nized into one or more applications 1112, operating system
1114, and hardware 1116. Configuration 1110(2) is orga-
nized into shared resources 1118, dedicated resources 1120,
and an interface 1122 there between.

[0069] In either configuration 1110, the device can include
storage/memory 1124, a processor 1126, and/or a 4D
dynamic solid modeling (4D DSM) component 1128. In
some implementations, the 4D dynamic solid modeling
component 1128 can include a 3D solid volume construction
algorithm, a subject candidate detection algorithm, a subject
classifier algorithm, a subject tracking algorithm, and/or an
action recognition algorithm. The 3D solid volume construc-
tion algorithm can determine voxel occupancy and/or con-
struct a 3D solid volume representation of the environment.
The subject candidate detection algorithm can find subject
candidates and/or determine partial volumes within the 3D
solid volume representation. The subject classifier algorithm
can classify whether the partial volumes contain a subject of
interest. The tracking algorithm can track subjects of interest
using 4D data. The action recognition algorithm can recog-
nize actions, interactions, and/or behaviors of the tracked
subjects.

[0070] In some configurations, each of devices 1104 can
have an instance of the 4D dynamic solid modeling com-
ponent 1128. However, the functionalities that can be per-
formed by 4D dynamic solid modeling component 1128 may
be the same or they may be different from one another. For
instance, in some cases, each device’s 4D dynamic solid
modeling component 1128 can be robust and provide all the
functionality described above and below (e.g., a device-
centric implementation). In other cases, some devices can
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employ a less robust instance of the 4D dynamic solid
modeling component 1128 that relies on some functionality
to be performed remotely. For instance, device 1104(2) may
have more processing resources than device 1104(1). In such
a configuration, depth data from cameras 120 may be sent to
device 1104(2). This device can use the depth data to train
one or more of the algorithms introduced above. The algo-
rithms can be communicated to device 1104(1) for use by 4D
dynamic solid modeling component 1128(1). Then 4D
dynamic solid modeling component 1128(1) can operate the
algorithms in real time on data from cameras 120 to recog-
nize an action of a person. In another case, the subject
tracking algorithm can be accomplished by 4D dynamic
solid modeling component 1128(1) on device 1104(1), while
the action recognition algorithm can be accomplished by 4D
dynamic solid modeling component 1128(2) on device 1104
(2), for example.

[0071] The term “device”, “computer”, or “computing
device” as used herein can mean any type of device that has
some amount of processing capability and/or storage capa-
bility. Processing capability can be provided by one or more
processors that can execute data in the form of computer-
readable instructions to provide a functionality. Data, such
as computer-readable instructions and/or user-related data,
can be stored on storage, such as storage that can be internal
or external to the device. The storage can include any one or
more of volatile or non-volatile memory, hard drives, flash
storage devices, and/or optical storage devices (e.g., CDs,
DVDs etc.), remote storage (e.g., cloud-based storage),
among others. As used herein, the term “computer-readable
media” can include signals. In contrast, the term “computer-
readable storage media” excludes signals. Computer-read-
able storage media includes “computer-readable storage
devices”. Examples of computer-readable storage devices
include volatile storage media, such as RAM, and non-
volatile storage media, such as hard drives, optical discs, and
flash memory, among others.

[0072] Examples of devices 1 104 can include traditional
computing devices, such as personal computers, desktop
computers, servers, notebook computers, cell phones, smart
phones, personal digital assistants, pad type computers,
mobile computers, appliances, smart devices, loT devices,
etc. and/or any of a myriad of ever-evolving or yet to be
developed types of computing devices.

[0073] As mentioned above, configuration 1110(2) can be
thought of as a system on a chip (SOC) type design. In such
a case, functionality provided by the device can be inte-
grated on a single SOC or multiple coupled SOCs. One or
more processors 1126 can be configured to coordinate with
shared resources 1118, such as memory/storage 1124, etc.,
and/or one or more dedicated resources 1120, such as
hardware blocks configured to perform certain specific func-
tionality. Thus, the term “processor” as used herein can also
refer to central processing units (CPUs), graphical process-
ing units (GPUs), field programmable gate arrays (FPGAs),
controllers, microcontrollers, processor cores, or other types
of processing devices.

[0074] Generally, any of the functions described herein
can be implemented using software, firmware, hardware
(e.g., fixed-logic circuitry), or a combination of these imple-
mentations. The term “component” as used herein generally
represents software, firmware, hardware, whole devices or
networks, or a combination thereof. In the case of a software
implementation, for instance, these may represent program
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code that performs specified tasks when executed on a
processor (e.g., CPU or CPUs). The program code can be
stored in one or more computer-readable memory devices,
such as computer-readable storage media. The features and
techniques of the component are platform-independent,
meaning that they may be implemented on a variety of
commercial computing platforms having a variety of pro-
cessing configurations.

Additional Examples

[0075] Various device examples are described above.
Additional examples are described below. One example
includes a system comprising multiple 3D cameras posi-
tioned relative to an environment to sense the environment
from different viewpoints. The system also comprises a
processing device and a storage device storing computer-
executable instructions which, when executed by the pro-
cessing device, cause the processing device to receive depth
data sensed by the multiple 3D cameras over time, determine
voxel occupancy of the environment from the depth data,
construct a 3D solid volume representation using the voxel
occupancy, select a subject in the 3D solid volume repre-
sentation, track the selected subject using the depth data over
time, recognize an action of the tracked subject using the 3D
solid volume representation, and output the recognized
action.

[0076] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to partition
the environment into voxels.

[0077] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to determine
the voxel occupancy by determining whether individual
voxels are occupied.

[0078] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to detect a
subject candidate by locating a local maximum in the 3D
solid volume representation.

[0079] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to establish
a partial volume around the subject candidate.

[0080] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to select the
subject by using a trained model to classify the partial
volume as containing the subject.

[0081] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to recognize
the action by applying a trained model to the 3D solid
volume representation.

[0082] Another example can include any of the above
and/or below examples where the computer-executable
instructions further cause the processing device to recognize
the action by aggregating the depth data sensed over time.
[0083] Another example includes a system comprising
multiple 3D cameras positioned relative to an environment
to sense depth data of the environment from different
viewpoints over time. The system also comprises a proces-
sor configured to process the depth data to construct 3D solid
volume representations of the environment, select subjects
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from the 3D solid volume representations, and recognize
actions of the selected subjects.

[0084] Another example can include any of the above
and/or below examples where the processor is further con-
figured to recognize an interaction between first and second
individual selected subjects in the environment.

[0085] Another example can include any of the above
and/or below examples where the processor is further con-
figured to determine partial volumes of the 3D solid volume
representations, where an individual partial volume corre-
sponds to an individual selected subject.

[0086] Another example can include any of the above
and/or below examples where the processor is further con-
figured to recognize an interaction between first and second
individual selected subjects, where a first individual partial
volume of the first individual selected subject overlaps a
second individual partial volume of the second individual
selected subject.

[0087] Another example can include any of the above
and/or below examples where at least a portion of the first
individual selected subject occupies voxels in the second
individual partial volume.

[0088] Another example can include any of the above
and/or below examples where the individual selected subject
is a person, and the processor is further configured to
recognize an interaction between the person and an object.
[0089] Another example can include any of the above
and/or below examples where at least a portion of the object
occupies voxels within the individual partial volume.
[0090] Another example includes a method comprising
receiving 4D data sensed by multiple 3D cameras in an
environment, constructing 3D solid volume representations
of the environment using the 4D data, and recognizing
actions of subjects in the 3D solid volume representations
using the 4D data.

[0091] Another example can include any of the above
and/or below examples where an individual 3D solid volume
representation describes voxel occupancy of the environ-
ment at a particular time point.

[0092] Another example can include any of the above
and/or below examples where the method further comprises
recognizing the actions of the subjects using models trained
on labeled 3D solid volume representations.

[0093] Another example can include any of the above
and/or below examples where the method further comprises
recognizing the actions of the subjects by analyzing partial
volumes of the 3D solid volume representations.

[0094] Another example can include any of the above
and/or below examples where the method further comprises
calibrating the 4D data sensed by the multiple 3D cameras
in the environment to build an individual 3D solid volume
representation using depth data from the multiple 3D cam-
eras.

Conclusion

[0095] Although the subject matter relating to 4D dynamic
solid modeling has been described in language specific to
structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as example forms of imple-
menting the claims.
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1. A system, comprising:
multiple 3D cameras positioned relative to an environ-
ment to sense the environment from different view-
points;
a processing device; and
a storage device storing computer-executable instructions
which, when executed by the processing device, cause
the processing device to:
receive depth data sensed by the multiple 3D cameras
over time,

determine voxel occupancy of the environment from
the depth data,

construct a 3D solid volume representation using the
voxel occupancy,

select a subject in the 3D solid volume representation,

track the selected subject using the depth data over
time,

recognize an action of the tracked subject using the 3D
solid volume representation, and

output the recognized action.

2. The system of claim 1, wherein the computer-execut-
able instructions further cause the processing device to
partition the environment into voxels.

3. The system of claim 2, wherein the computer-execut-
able instructions further cause the processing device to
determine the voxel occupancy by determining whether
individual voxels are occupied.

4. The system of claim 1, wherein the computer-execut-
able instructions further cause the processing device to
detect a subject candidate by locating a local maximum in
the 3D solid volume representation.

5. The system of claim 4, wherein the computer-execut-
able instructions further cause the processing device to
establish a partial volume around the subject candidate.

6. The system of claim 5, wherein the computer-execut-
able instructions further cause the processing device to
select the subject by using a trained model to classify the
partial volume as containing the subject.

7. The system of claim 1, wherein the computer-execut-
able instructions further cause the processing device to
recognize the action by applying a trained model to the 3D
solid volume representation.

8. The system of claim 7, wherein the computer-execut-
able instructions further cause the processing device to
recognize the action by aggregating the depth data sensed
over time.

9. A system, comprising:

multiple 3D cameras positioned relative to an environ-
ment to sense depth data of the environment from
different viewpoints over time; and,

a processor configured to process the depth data to
construct 3D solid volume representations of the envi-
ronment, select subjects from the 3D solid volume
representations, and recognize actions of the selected
subjects.

10. The system of claim 9, wherein the processor is
further configured to recognize an interaction between first
and second individual selected subjects in the environment.

11. The system of claim 9, wherein the processor is further
configured to determine partial volumes of the 3D solid
volume representations, where an individual partial volume
corresponds to an individual selected subject.

12. The system of claim 11, wherein the processor is
further configured to recognize an interaction between first
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and second individual selected subjects where a first indi-
vidual partial volume of the first individual selected subject
overlaps a second individual partial volume of the second
individual selected subject.

13. The system of claim 12, wherein at least a portion of
the first individual selected subject occupies voxels in the
second individual partial volume.

14. The system of claim 11, wherein the individual
selected subject is a person, and the processor is further
configured to recognize an interaction between the person
and an object.

15. The system of claim 14, wherein at least a portion of
the object occupies voxels within the individual partial
volume.

16. A method, comprising:

receiving 4D data sensed by multiple 3D cameras in an

environment;
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constructing 3D solid volume representations of the envi-

ronment using the 4D data; and,

recognizing actions of subjects in the 3D solid volume

representations using the 4D data.

17. The method of claim 16, wherein an individual 3D
solid volume representation describes voxel occupancy of
the environment at a particular time point.

18. The method of claim 16, further comprising recog-
nizing the actions of the subjects using models trained on
labeled 3D solid volume representations.

19. The method of claim 16, further comprising recog-
nizing the actions of the subjects by analyzing partial
volumes of the 3D solid volume representations.

20. The method of claim 16, further comprising calibrat-
ing the 4D data sensed by the multiple 3D cameras in the
environment to build an individual 3D solid volume repre-
sentation using depth data from the multiple 3D cameras.
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